

Strategic Management of Organic Farming Innovation Villages: Enhancing Agricultural Productivity and Sustainability

Dhea Pramestya Ningrum¹, Vidya Imanuari Pertiwi¹

Public Administration, Faculty of Social and Political Sciences, UPN Veteran East Java, Surabaya, Indonesia

Corresponding Author Email: 21041010087@student.upnjatim.ac.id

ABSTRACT

Received : September 7, 2025

Revised : November 27, 2025

Accepted : December 30, 2025

Keywords:

Strategic Management; DITO Program;
Sustainable Agriculture; Productivity

This study addresses the persistent challenge of declining agricultural productivity and environmental degradation caused by conventional, chemical-based farming practices. The main objective is to analyze how strategic management can strengthen the implementation of Organic Farming Innovation Villages (Desa Inovasi Tani Organik, DITO) to improve productivity and sustainability in the agricultural sector. Employing a qualitative case study design, the research involved purposively selected informants, including government officials, agricultural extension workers, and members of farmer groups. Data were collected through in-depth interviews, observations, and documentation, validated using triangulation, and analyzed using the interactive model of Miles and Huberman. Findings were interpreted through Wheelen and Hunger's strategic management framework, covering environmental scanning, strategy formulation, implementation, and evaluation. Results indicate that fertile land, strong farmer institutions, and policy support act as key strengths, while weaknesses include limited extension personnel and entrenched reliance on conventional methods. Opportunities are driven by growing consumer demand for healthy products and regulatory support, whereas threats include climate variability, land degradation, and farmer resistance. Implementation has shown positive impacts through training, mentoring, demonstration plots, and organic certification, though challenges remain in human resource capacity, fertilizer production, and market stability.

INTRODUCTION

The agricultural sector plays a pivotal role in strengthening Indonesia's economy. Its contribution to the Gross Domestic Product (GDP) ranks prominently after the manufacturing and trade sectors. Furthermore, agriculture remains a central pillar of national development, particularly in the management and optimization of strategically important food commodities (Kusuma et al., 2024). One of the most influential food commodities in maintaining national food security is rice, which continues to serve as the primary staple food for the Indonesian population.

The demand for food, particularly rice, represents a fundamental necessity that plays a crucial role in sustaining human life. This commodity holds a highly strategic position, as rice serves as the primary staple food consumed daily by the majority of Indonesia's population (Ariyanti et al., 2024). Indonesia is among the world's largest rice-consuming and rice-producing countries. The average domestic rice consumption in Indonesia reached 35.66 million tons per year during the 2019–2023 period (Sabarella, 2024).

According to Laili, (2024), domestic rice production has generally experienced fluctuations and tends to decelerate. This condition is presumed to be driven by the decline in harvested rice area due to land conversion into industrial zones

and residential areas. Although Indonesia possesses substantial potential in the rice agriculture sector, many farmers still rely on less efficient traditional farming methods. The limited adoption of modern agricultural technologies, such as the use of high-yield seed varieties and sustainable farming practices, remains a key factor hindering productivity growth.

The findings of Rizon et al., (2025) indicate that inorganic farming practices have had adverse impacts on the environment, primarily through the dependency of land and crops on chemical inputs. In the long term, the excessive use of chemicals in the agricultural sector contributes to land degradation, increases the risk of natural disasters, and exacerbates the climate crisis. Therefore, in addressing the increasingly evident negative impacts of inorganic farming, agricultural development should be directed toward more sustainable and environmentally friendly approaches.

As a form of support for the production of healthy food, the government has established regulations that serve as the foundation for the implementation of organic farming in Indonesia (Rifky & Anugrah, 2023). This is stipulated in the Peraturan Menteri Pertanian Nomor 64/Permentan/OT. 140/5/2013 Tentang Sistem Pertanian Organik. The regulation defines the Organic Farming System as a holistic production management system aimed at enhancing and developing the

health of agroecosystems, including biodiversity, biological cycles, and soil biological activity. Organic farming emphasizes the application of management practices that prioritize the use of inputs derived from on-farm cultivation waste, while taking into account adaptability to local conditions. Where possible, this can be achieved through cultural, biological, and mechanical methods that avoid the use of synthetic materials to meet specific needs within the system. The regulation defines the Organic Farming System as a holistic production management system designed to enhance and sustain the health of agroecosystems, including biodiversity, biological cycles, and soil biological activity. Organic farming emphasizes the implementation of management practices that prioritize the use of inputs derived from on-farm cultivation residues, while considering adaptability to local conditions. Where feasible, this can be achieved through cultural, biological, and mechanical methods that exclude the use of synthetic materials to address specific needs within the system.

Recent empirical studies have advanced understanding of organic farming adoption in Indonesia, particularly highlighting both technical and institutional constraints. For example, *Turning Indonesia Organic: Insights from Transdisciplinary Research* (Fritz et al., 2021) examines how smallholders struggle with access to information, socio-cultural barriers, and weak institutional support when converting from Green Revolution-intensive agriculture to organic systems. In addition, research on Use of Organic Fertilizers and IPM In Certified Organic Rice Farming in East Java (Winarno et al., 2024) demonstrates quantitatively that organic fertilizers and Integrated Pest Management (IPM) significantly increase organic rice productivity, while also identifying persistent challenges such as limited market access and knowledge gaps among farmers. Studies closer to your focal area include *Development Strategy of Rice Organic Farming Sustainability: A Case Study in Kediri* (2017), which outlines strategies for Kepung Subdistrict, and *Intervention Model on Agribusiness Development of Organic Agriculture System: Case of Organic Rice Farmers Groups in Kediri Regency* (Artini et al., 2019), which investigates farmer group constraints and proposes intervention models in Kediri.

Despite this growing body of literature, gaps remain. Many studies have been descriptive, focused on single subdistricts or villages, or have emphasized either technical, social, or institutional dimensions separately rather than integrating them in a strategic management framework. What is lacking is a rigorous evaluation of a region-wide innovation program (such as DITO) through all stages of strategic management: environmental scanning, formulation, implementation, and evaluation. This study's novelty lies in applying the Wheelen & Hunger (2012) strategic management theory to the DITO program in Kediri Regency, combining empirical field data across multiple villages and integrating technical, organizational, and policy components. Thus, this research fills a literature gap by offering both theoretical advancement in strategy evaluation and practical guidance for scalable, sustainable organic rice production at the district level.

Based on the 2023–2024 rice production data released by Statistics Indonesia (BPS), East Java Province ranked as the largest rice producer, recording a total production of 9,270,435.29 tons in 2024. East Java has consistently maintained its position as the leading rice-producing region in Indonesia, demonstrating its substantial potential in this sector. Among its regions, Kediri Regency stands out as one of the most promising areas for rice production.

The Kediri Regency Government strongly promotes the rice farming sector across its entire region. Geographically, Kediri is situated between 111°47'05" to 112°18'20" East Longitude and 7°36'12" to 8°00'32" South Latitude, providing the regency with fertile land and abundant natural resources. According to Statistics Indonesia (BPS, 2025), the rice planting area in Kediri Regency reached 51,043 hectares as of July 2025. The Kediri Regency Government continues to intensify achievements in the agricultural sector, particularly rice production, through the implementation of an agricultural revitalization mission aimed at achieving food security and self-sufficiency in the region (Izzuddin & Widiyarta, 2024). Consequently, Kediri's agricultural output not only meets local needs but also serves as a key contributor to the food supply of East Java Province, and even at the national level.

Along its trajectory, this effort has not been without challenges. As outlined in the strategic issues of the Regional Medium-Term Development Plan (RPJMD), the key obstacles in developing the agricultural sector in Kediri Regency include low farmer income, high production costs, limited utilization of agricultural technology, suboptimal availability of data and information to support productivity enhancement and agricultural area development, climate irregularities, and shifts in agricultural land use.

Subsequently, in response to these challenges, the Organic Farming Innovation Village Program (*Desa Inovasi Tani Organik* or DITO) was introduced to address agricultural issues in Kediri Regency (Pahlawan & Wibawani, 2023). The program was initiated by the Regent of Kediri, popularly known as Mas Dhito. The strategies and policies implemented by the Department of Agriculture and Plantations of Kediri Regency focus on enhancing the productivity of the food crop, horticulture, and plantation sectors, while simultaneously strengthening farm efficiency and increasing the added value of agricultural products.

The development of the smart agriculture concept in Kediri Regency is carried out through the utilization of technological innovations, one of which is the implementation of the Organic Farming Innovation Village (DITO) Program. The program is designed around two main indicators. First, its manageable application in 80 villages, with activity centers located in the districts of Purwoasri, Kepung, and Semen, supported by other villages across Kediri Regency. Second, the reduction of chemical fertilizer use, which is implemented comprehensively throughout all districts within the regency.

Consisting of 26 districts, the entire administrative area relies heavily on rice fields as the backbone of its agricultural sector, particularly in rice production (Winahyu, 2020). According to data obtained from *kedirkab.bps.go.id*, the following are the five districts in Kediri Regency with the highest rice production in 2022:

Table 1. Rice Production by District in Kediri Regency

No	Kecamatan	Luas Pertanian Sawah (ha)	Produksi Padi (kw)
1	Purwoasri	2.778	345.790,00
2	Plemahan	3.201	299.930,00
3	Kandangan	1.790	246.640,00
4	Kunjang	1.879	191.230,00
5	Badas	2.181	190.230,00
6	Tarokan	883	164.420,00
7	Kepung	2.356	159.030,00
8	Banyakan	1.008	155.980,00
9	Semen	1.391	150.990,00
10	Papar	1.714	141.180,00

Source: *kedirkab.bps.go.id*, 2025

Based on the available data, Purwoasri District demonstrates exceptionally high agricultural productivity compared to other districts in Kediri Regency. Despite having only 2,778 hectares of rice fields, Purwoasri recorded the highest rice production in the regency, reaching 345,790.00 quintals. This figure far surpasses the productivity of other districts with larger land areas but significantly lower yields. This highlights why Purwoasri has been designated as one of the central areas for implementing the DITO program, along with three other districts collectively referred to as Palem Pari: Pare, Plemahan, Papar, and Purwoasri.

Purwoasri District is one of the regions with remarkable agrarian potential, as reflected in the *Purwoasri District in Figures* report published by Statistics Indonesia (BPS, 2024). The report presents data on land area by type of utilization in Purwoasri District, as follows:

Picture 1. Percentage of Land Area by Type of Utilization in Purwoasri District

Source: kedirikab.bps.go.id, 2025

Based on the 2023 land-use mapping data, Purwoasri District is predominantly characterized by agricultural land, which accounts for 70.3% of its total area. This composition consists of 35.2% paddy fields and 35.1% irrigated rice fields. In contrast, non-agricultural land constitutes only 23.4%, while non-paddy land covers 6.2%. The high proportion of agricultural land indicates that Purwoasri District possesses substantial agrarian potential and is well-suited to serve as a center for the development of sustainable farming systems.

Despite the considerable agrarian potential of Purwoasri District as the center of the DITO Program implementation, the strategies adopted still face several obstacles, such as the limited number of field agricultural extension officers and the suboptimal level of farmer participation. This indicates that the implementation of the strategies has not yet been fully effective across all target villages, particularly in Purwoasri District.

This study adopts the strategic management theory proposed by Wheelen & Hunger, (2012), as it offers a more comprehensive and accessible approach to analyzing the issues under investigation (Diana et al., 2024). The theory encompasses several key elements, namely environmental scanning, strategy formulation, strategy implementation, and evaluation and control. This framework enables the researcher to assess the extent to which the strategies applied have been appropriately formulated, effectively implemented, and systematically evaluated. The adoption of this theory is based on its relevance to the research problem, as reflected through the alignment of its elements with the issues examined in this study.

METHOD

This study employs a qualitative approach with a case study strategy to gain an in-depth understanding of the strategic management of the DITO (Organic Farming Innovation Village) program for agricultural improvement in Purwoasri District, Kediri Regency. According to Creswell, (2015), the qualitative approach is used to explore and understand the meanings ascribed by individuals or groups to social or human problems. The case study design enables the researcher to trace the processes of planning, implementation, and evaluation of the program within its specific temporal, spatial, and actor-involvement contexts.

Data were collected through interviews, observations, and documentation to capture the meanings and dynamics of the strategies implemented in a comprehensive manner. The research location was selected using purposive sampling, based on the relevance of the available information sources to the main issues under investigation. Accordingly, Purwoasri District was designated as the research site. The selection of informants was carried out using snowball sampling. The informants in this study included the Head of Food Management Division of the Department of Agriculture and Plantations of Kediri Regency, field agricultural extension officers (PPL) in Purwoasri District, and organic farming groups in Purwoasri District.

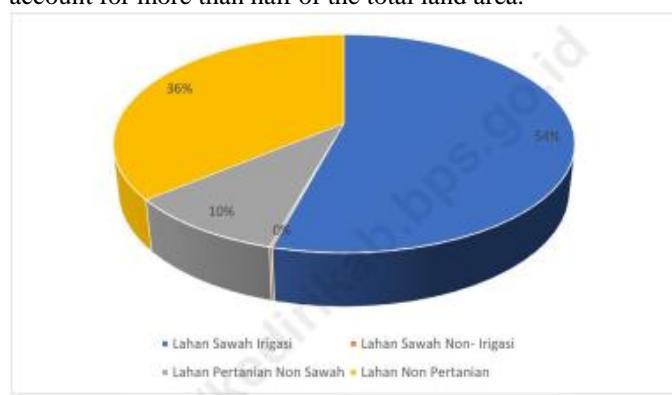
In the study on the Strategic Management of the DITO (Organic Farming Innovation Village) Program for Agricultural Development in Purwoasri District, Kediri Regency, the researcher utilized two types of data sources: primary and secondary. Primary data were obtained through observations and interviews. Secondary data sources included regional planning documents such as the Kediri Regency Medium-Term Development Plan (RPJMD), official documents related to the DITO program, scientific references such as journal articles and books, relevant legislation, as well as information from electronic media concerning organic farming and rural development strategies.

This research employed the interactive model of analysis as proposed by Miles and Huberman (1984) in (Sugiyono, 2022). The model consists of four main stages: data collection, data condensation (simplifying or categorizing relevant information), data display (systematic presentation of data), and conclusion drawing/verifying. To ensure data validity, the study applied triangulation techniques. According to Norman K. Denzin in (Ramdhani, 2025), triangulation consists of three forms: data triangulation, methodological triangulation, and theoretical triangulation.

RESULT AND DISCUSSION

The Organic Farming Innovation Village (DITO) Program is one of the strategic policies of the Kediri Regency Government aimed at enhancing agricultural productivity in a sustainable manner through a community-based organic farming approach. According to Cahya Tirtani et al., (2024), the program is implemented through training in organic fertilizer production, the application of environmentally friendly planting systems, and the mapping of agropolitan areas as priority zones for organic farming. The DITO Program also introduces demonstration plots (*demplot*) as educational tools for farmers to compare the outcomes of organic farming with those of conventional farming, thereby raising farmers' awareness and interest in adopting organic practices.

The Organic Farming Innovation Village (DITO) Program is regulated under the Strategic Plan of the Department of Agriculture and Plantations of Kediri Regency for the 2021–2026 period, which was formulated in accordance with Law No. 25 of 2004 on the National Development Planning System


as a five-year planning document. The following section presents the research discussion, analyzed sequentially with a focus and scope of study based on the strategic management theory of Wheelen and Hunger (2012), which encompasses environmental scanning, strategy formulation, strategy implementation, and evaluation and control.

1. Environmental Scanning

Wheelen and Hunger (2012) emphasize that environmental scanning is a crucial stage in strategic management, as it provides the foundation for organizations to formulate appropriate policies. This analysis comprises two main dimensions: internal factors and external factors. The purpose of this scanning process is to identify strategic factors that may influence the success of enhancing organic agricultural productivity in Purwoasri District. According to Wheelen and Hunger (2012), the simplest way to conduct environmental scanning is through a SWOT analysis. Kotler, as cited in (Untari et al., 2024), also highlights that SWOT analysis is an essential component of the strategic management process, serving as a tool to identify both internal and external factors affecting an organization's success. Through this analysis, organizations can recognize their internal strengths and weaknesses, while also understanding opportunities and threats that originate externally.

The results of the environmental analysis using the SWOT approach indicate that Purwoasri District possesses a combination of internal and external factors that simultaneously create opportunities and challenges for the success of the Organic Farming Innovation Village (DITO) Program.

a). From the internal strength perspective, the region is supported by the availability of extensive and productive agricultural land, particularly irrigated rice fields, which account for more than half of the total land area.

Picture 2. Land Area of Villages/Sub-districts by Utilization in Purwoasri District, 2023

Source: Purwoasri District in Figures, 2025

This condition positions Purwoasri as one of the strategic agricultural centers in Kediri Regency. In addition to its land potential, another strength lies in the presence of strong farmer institutions, as evidenced by 91 active farmer groups as of 2025. These institutions play a crucial role as platforms for coordination, learning, and the dissemination of agricultural innovations, ensuring that the program runs in a more structured manner. Another supporting factor is government involvement, not only through regulatory frameworks but also via technical assistance, provision of production inputs, and institutional facilitation, which further strengthens the foundation for program implementation.

b). Nevertheless, several internal weaknesses need to be addressed. The limited human resources, both in terms of the number of extension officers and the technical capacity of

farmers, serve as major constraints. The deeply rooted conventional farming culture hinders the adaptation to organic farming systems, as they are often perceived as more complex and time-consuming to yield results. In addition, farmers' limited technical knowledge in producing organic fertilizers, botanical pesticides, and understanding organic standards underscores the necessity of intensive and continuous assistance.

c). From an external perspective, the program holds considerable opportunities. The regulations stipulated in the Kediri Regency Medium-Term Development Plan (RPJMD) 2021–2026 serve as both a legal foundation and a guarantee for the sustainability of organic farming policies. This support is further reinforced by the facilitation of organic certification and the planned establishment of specialized cooperatives to expand market access. Moreover, the growing consumer awareness of healthy and environmentally friendly products creates broader marketing opportunities for Purwoasri's organic produce. The advancement of eco-friendly technologies also serves as a supporting instrument to enhance production efficiency.

d). Nevertheless, the program also faces threats that cannot be overlooked. Experiences from previous initiatives, such as the Farmer Field School that relied primarily on conventional approaches, demonstrate that soil fertility issues remained unresolved. This legacy continues to challenge DITO, as much of the land has long been exposed to chemical inputs and requires time for recovery. The risk of pest attacks, particularly brown planthoppers, along with climate uncertainty, further constitutes external factors that may affect the program's success. In addition, resistance from some farmers who remain skeptical about the outcomes of organic farming has the potential to slow down the transformation process.

Overall, Purwoasri District possesses substantial potential to serve as a model for sustainable organic farming centers in Kediri Regency. Its strengths productive land, strong farmer institutions, and regulatory support provide a solid foundation for the program. However, the success of DITO's implementation will largely depend on the ability to address internal weaknesses and anticipate external threats through intensive extension strategies, eco-friendly technological innovations, and the strengthening of farmer institutions. With the right strategies, Purwoasri can not only enhance organic agricultural productivity but also has the potential to become a pioneer in sustainable agricultural development at the regional level.

Factor	Description
Strengths	Fertile land, strong farmer institutions, policy support
Weaknesses	Limited extension personnel, reliance on conventional farming
Opportunities	Growing demand for healthy products, organic certification, policy support
Threats	Climate variability, land degradation, pest attacks, farmer resistance

2. Strategy Formulation

The formulation of strategies for the Organic Farming Innovation Village (DITO) Program in Purwoasri District is grounded in a strategic management framework that emphasizes the importance of aligning vision and mission, internal–external conditions, and regional development policy direc-

tions. The primary legal foundations are the Minister of Agriculture Regulation No. 64/Permentan/OT.140/5/2013 on the Organic Farming System and the Kediri Regency Medium-Term Development Plan (RPJMD) 2021–2026, particularly the fourth mission: “Revitalizing Agriculture for Food Security and Self-Sufficiency.” From this formulation process, the main strategies of the DITO Program are directed toward several key points, namely:

Table 2. Beneficiaries of the Dandan Omah Program in Kedung Cowek Village, Surabaya City

No	Activity	Sub-Activity
1	Initial implementation stage	Activities at this stage include the selection of prospective farmers and prospective land (CP/CL), training for extension officers, dissemination at both the district and farmer group levels, as well as the provision of necessary production inputs.
2	Certification implementation stage	The certification process begins with training, technical assistance, and pre-assessment for farmer groups. This is followed by the preparation of quality system documents as certification requirements, and finally the formal certification stage.
3	Monitoring and maintaining organic certification sustainability	Quality control is carried out by the Organic Certification Agency (LSO) through periodic supervision mechanisms.
4	Post-implementation stage	At this stage, farmers, farmer groups, and farmer group associations are expected to consistently apply organic farming practices by independently utilizing production inputs. These efforts aim to produce high-quality and safe organic agricultural commodities. Continuous assistance is provided to ensure the optimal application of organic principles.

In the formulation of the DITO strategy, clear success indicators have been established, including implementation targets in 80 villages, a significant reduction in chemical fertilizer use, increased yields of rice and other organic commodities, expansion of organically certified land, and improved market access with higher selling prices. Substantively, the DITO strategy is not only oriented toward enhancing organic agricultural productivity but also toward improving farmers' welfare through economically and managerially independent institutions. With this approach, Purwoasri District is positioned as the center of organic farming development in Kediri Regency, which is expected to serve as a model for the implementation of sustainable agriculture at the regional level.

3. Strategy Implementation

The implementation of the Organic Farming Innovation Village (DITO) Program strategy in Purwoasri District de-

monstrates that the formulated strategic plans have been translated into practice through systematic operational stages. The activities began with socialization sessions for farmers on the concept of organic farming, followed by the establishment of demonstration plots as pilot fields to directly showcase the outcomes of organic farming.

Following the initial stage, the strategy proceeded with continuous training and assistance facilitated by Agricultural Extension Officers (PPL). The training materials covered chemical-free cultivation techniques, the production of organic fertilizers and pesticides, integrated pest management, and post-harvest handling. Field assistance ensured that farmers gained practical experience while also receiving solutions to the challenges they encountered.

Picture 3. Implementation of training programs and field mentoring on organic farming systems

Government support is also provided through the provision of facilities and infrastructure for organic farming, including soil testing equipment, microbial laboratories, agricultural drones, and rotary tractors. These facilities are designed to facilitate farmers' transition from conventional to organic systems. In addition, the government facilitates organic certification and expands market access through the support of cooperatives, modern retail outlets, and promotional activities such as innovation product exhibitions.

Nevertheless, the implementation still faces several challenges. The main obstacles include farmers' limited time and labor for producing organic fertilizers, the shortage of extension officers, as well as external factors such as extreme weather and pest attacks that cannot be controlled with chemical pesticides. In terms of marketing, although distribution networks have been established through farmer groups and government promotion, price guarantees and market stability remain critical issues.

Overall, the implementation of the DITO Program has successfully enhanced farmers' knowledge, skills, and motivation in developing organic farming. However, the program's long-term effectiveness largely depends on intensive extension support, consistent application of organic practices in the field, and strengthened market access to ensure the sustainable competitiveness of organic agricultural products.

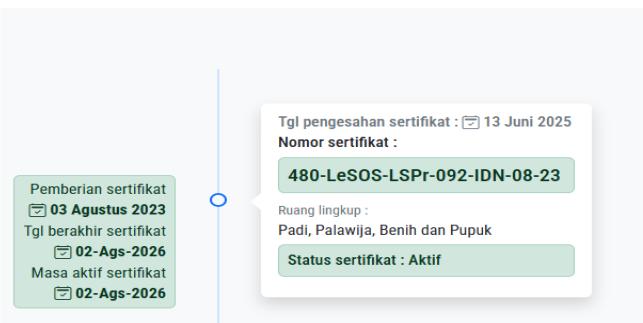
4. Evaluation and Control

According to Wheelen & Hunger (2012), strategy evaluation and control represent crucial stages to assess the effectiveness of implementation and to make corrections in case of deviations. In the context of the Organic Farming Innovation Village Program (DITO), evaluation is carried out through a field monitoring mechanism conducted by Agri-

cultural Extension Workers (PPL), who regularly report the program's progress. These reports serve as the basis for measuring the achievement of indicators established in the Kediri Regency Medium-Term Development Plan (RPJMD) 2021–2026.

Table 3. PPL Service Area Distribution in Purwoasri Subdistrict

No	Subdistrict	Name	Service Area
1.	Purwoasri	Moh. Riduwan, S.P.	Ketawang, Blawe, Kempleng, Dawuhan
2.	Purwoasri	Majiono	Jantok, Wonotengah, Pandansari, Bulu
3.	Purwoasri	Khairudin, S.P.	Pesing, Muneng, Mekikis, Karangpakis
4.	Purwoasri	Wahyu Sutiarno, A.Md.P.	Mranggen, Tugu, Woromarto, Sumberjo
5.	Purwoasri	Nisriina Faiqoh, A.Md.P.	Purwoasri, Purwodadi, Merjoyo
6.	Purwoasri	Eko Budi Setiawan, SP	Belor, Sidomulyo, Klampitan, Dayu


Source Table: Kediri Regency Agriculture and Plantation Office, 2025

The evaluation results indicate that the implementation target in 80 villages has been achieved, with all 23 villages in Purwoasri Subdistrict successfully implementing the program. This can be observed in the table above, which presents the distribution of Agricultural Extension Workers (PPL) service areas in Purwoasri. Such achievement cannot be separated from the equitable allocation of PPL, which enabled intensive technical assistance. In terms of productivity, data from the Purwoasri Subdistrict Agricultural Extension Agency (BPP) show an increase in rice yields from 327,800 quintals in 2021 to 381,230 quintals in 2024 (an increase of approximately 16.3%). This improvement demonstrates the contribution of the DITO program in boosting productivity, although the aggregate data have not yet distinguished between organic and conventional outputs.

The evaluation also emphasizes the transition to the use of organic fertilizers. Interview results reveal farmers' enthusiasm to adopt this practice, although some still rely on chemical fertilizers for practical reasons. On the other hand, a significant achievement is demonstrated through the official certification granted by the Indonesian Organic Certification Agency (LeSOS), with registration number 480-LeSOS-LSPR-092-IDN-08-23, covering rice, secondary crops, seeds, and fertilizers until 2026. This certification not only strengthens the legitimacy of organic farming in Purwoasri but also enhances the market value and competitiveness of its products.

SERTIFIKASI ORGANIK

PETANI ORGANIK PANJALU PURWOASRI KEDIRI

Picture 4. Organic Agriculture Certification

Source: lesosindonesia.com, 2025

Beyond technical aspects, the evaluation reveals social impacts in the form of strengthened solidarity and farmers' social capital. Training activities, group meetings, and institutional management have fostered cohesion while simultaneously enhancing farmers' capacity to independently manage organic farming. Although challenges remain—such as resistance from some farmers, the lack of specific data on organic production, and marketing issues—the implementation of the DITO Program is considered to be on the right track. Moving forward, strengthening organic-based data monitoring, enhancing farmers' capacity, and expanding market access will be key to ensuring the program's sustainability.

CONCLUSION

This study highlights the pivotal role of the agricultural sector, particularly rice farming, in supporting food security in Kediri Regency, East Java. The findings indicate that despite challenges such as land conversion, high production costs, and limited adoption of modern technology, the region maintains significant agrarian potential, with Purwoasri Subdistrict standing out as the most productive area. Data from the Agricultural Extension Agency (BPP) demonstrate a 16.3% increase in rice yields between 2021 and 2024, underscoring the positive impact of the Organic Farming Innovation Village (DITO) program.

The application of Wheelen & Hunger's (2012) strategic management framework revealed that the DITO program has been formulated and implemented to address pressing agricultural issues through the promotion of organic farming, reduction of chemical fertilizer dependency, and empowerment of local farmers. Nevertheless, constraints such as insufficient extension officers and uneven farmer participation suggest that program implementation has not yet achieved optimal effectiveness across all target villages.

The novelty of this research lies in its comprehensive evaluation of a district-wide innovation program using strategic management theory, integrating environmental, social, and institutional dimensions. The study contributes both theoretically, by applying a holistic framework, and practically, by offering evidence-based insights to strengthen program scalability and sustainability. In conclusion, strengthening farmer participation, expanding access to agricultural technology, and enhancing institutional support are essential for maximizing the long-term impact of the DITO program and advancing sustainable rice farming in Kediri Regency.

REFERENCES

Artini, W., Rahardjo, D., Vitasmor, P., & Jatmiko. (2019). Intervention Model on Agribusiness Development of Organic Agriculture System (Case Study of Organic Rice Farmers Groups in Kediri District). *Proceedings of the International Conference on Social Science 2019 (ICSS 2019)*. <https://doi.org/10.2991/icss-19.2019.31>

Cahya Tirtani, C., Khofifah Ayu Ashari, N., Solikhin, M., Yasin, M., Matematika, D., & Matematika dan Ilmu Pengetahuan Alam, F. (2024). Analisis Efektivitas Program Desa Inovasi Tani Organik (DITO) Terhadap Luas Panen Padi di Kabupaten Kediri Menggunakan Teknik Peramalan Deret Waktu. *Pengabdian Kepada Masyarakat*, 2(3).

Candra Kusuma, A., Fadilah, Z. R., Kamal, R. B., Syukria Herida, I., Syifaulhaq, A., & Budiasih, B. (2024). Keterkaitan dan Kontribusi Sektor Pertanian di

Indonesia: Analisis Input-Output. 8(2), 643–657. <https://doi.org/10.21776/ub.jepa.2024.008.02.20>

Creswell, J. W. (2015). *Research Design Pendekatan Kualitatif, Kuantitatif, dan Mixed* (3rd ed.).

Diana, L., Peternakan, D., Kesehatan, D., Provinsi, H., & Koresponden, R. (2024). *Strategi Pengembangan Organisasi Melalui Business Model Canvas Development Strategy Organization Through Melalui Business Model Canvas* (Vol. 15, Issue 3). <https://jkp.ejournal.unri.ac.idhttps://jkp.ejournal.unri.ac.id>

Dwi Ariyanti, S., Nabila, U., Rahmawati, L., Syariah, M. E., Ampel, S., Pascasarjana, D., Syariah, E., & Surabaya, I. (2024). Pemenuhan Kebutuhan Produksi Beras Nasional Dalam Meningkatkan Kesejahteraan Masyarakat Menurut Perspektif Ekonomi Islam. *Jurnal Ekonomi Syariah Dan Bisnis*, 7(1). <https://doi.org/10.31949/maro.v7i1.9121>

Fritz, M., Grimm, M., Keilbart, P., Laksmana, D. D., Luck, N., Padmanabhan, M., Subandi, N., & Tamtomo, K. (2021). Turning Indonesia Organic: Insights from Transdisciplinary Research on the Challenges of a Societal Transformation. *Sustainability*, 13(23), 13011. <https://doi.org/10.3390/su132313011>

Izzuddin, P. R., & Widiyarta, A. (2024). Strategi Pemerintah Desa dalam Upaya Percepatan Penurunan Stunting di Desa Srungi Kecamatan Gedangan Kabupaten Sidoarjo. *NeoRespublica : Jurnal Ilmu Pemerintahan*, 5(2), 971–986. <https://doi.org/10.52423/neores.v5i2.288>

Laili, N. 'Irfan W. (2024). *Permintaan dan Penawaran Beras di Provinsi Jawa Timur*.

Pahlawan, A. Y., & Wibawani, S. (2023). Strategi Peningkatan Budaya Literasi Melalui Program Gendis Sewu di Perpustakaan Rakyat Pangesangan Kota Surabaya. *Populis : Jurnal Sosial Dan Humaniora*, 8(1), 9–18. <https://doi.org/10.47313/pjsh.v8i1.2079>

Peraturan Menteri Pertanian Nomor 64/Permentan/OT.140/5/2013 Tentang Sistem Pertanian Organik. (n.d.).

Ramdhani, T. W. (2025). *Metode Penelitian Kualitatif (Teori, Teknik, dan Aplikasi)*. Press STAI Darul Hikmah Bangkalan.

Rifky, A., & Anugrah, S. (2023). Sinkronisasi Kebijakan Kelapa Sawit Berkelanjutan. In *Jurnal Kebijakan Publik* (Vol. 14, Issue 3). <https://jkp.ejournal.unri.ac.idhttps://jkp.ejournal.unri.ac.id>

Rizon, M., Serawati, B. A., & Reflis. (2025). Menakar Pertanian Anorganik dan Keberlanjutan Lingkungan Hidup di Indonesia. *Agribusiness Social Economiics*, 33.

Sabarella. (2024). *Buletin Konsumsi Pangan*.

Sugiyono. (2022). *Metode Penelitian Kualitatif*. Alfabeta.

Untari, D. S., Sumarji, & Mulyaningtyas, R. D. (2024). Strategi Pengembangan Usaha Tani Padi Berbasis Protokol Pertanian Organik Sebagai Pilot Project Kabupaten Ngawi. *Manajemen Agribisnis:Jurnal Agribisnis, Volume 24 Nomor 2*, 234–245.

Wheelen, T. L., & Hunger, J. D. (2012). *Strategic Management And Business Policy Towards Global Sustainability*.

Winahyu, N. (2020). *Analisis Penentuan Komoditas Unggulan Tanaman Pangan Di Kabupaten Kediri Provinsi Jawa Timur*.

Winarno, D. R., Tarno, H., & Mudjiono, G. (2024). Use Of Organic Fertilizers and IPM In Certified Organic Rice Farming in East Java. *Research Journal of Life Science*, 11(1), 14–21. <https://doi.org/10.21776/ub.rjls.2024.011.01.2>